
AI generated Image

Whitepaper

Ephemeral Environments 
Unlocking FinOps Value with
Automated Ephemeral Environments
for Non-Production Workloads

Unlocking FinOps Value with Automated
Ephemeral Environments for Non-
Production Workloads

Introduction

While looking for ways to streamline the delivery of non-production environments, an enterprise

software vendor working with the Quali team discovered a cloud cost savings opportunity that

amounted to millions of dollars every year.

However, even while understanding how those savings could affect gross margins, leadership at

this organization didn’t believe it was feasible. The overhead required to orchestrate and manage

the lifecycle of these environments would be so significant that the organization couldn’t take the

project on.

Unfortunately, this situation is far too common. Even advanced cloud-native organizations leave

millions of dollars of FinOps value on the table simply because they lack the toolset to optimize the

operational side of their cloud infrastructure.

In this paper, we’ll walk through this specific example and highlight best practices among the Quali

community to understand:

 The financial impact of ephemeral environments for non-production workloads

 Automation capabilities that have helped to transition these workloads to ephemeral

environment

 Additional cost optimization and productivity benefits accessible for ephemeral environments

What are Ephemeral Environments?

Ephemeral environments entail the provisioning and termination of infrastructure to support any

workload that does not need to be available permanently.

Commonly used for use cases such as software development, testing, demos, training, or POCs,

ephemeral environments align infrastructure consumption with actual resource utilization.

01 | Whitepaper Ephemeral Environments

What are Ephemeral Environments?

Ephemeral environments can consist of anything ranging from individual infrastructure resources,

such as basic virtual machines, to complex definitions of dependencies between infrastructure,

data services, applications, and anything else needed to deliver the environment output.

Ephemeral environments typically fall into one of two categories:

Scheduled environments: Commonly used for workloads that require on-demand access from

large numbers of users at any point during standard business hours, these types of environments

are provisioned at the beginning of the workday and then terminated at the end of the workday.

This approach accounts for the on-demand nature of the infrastructure while eliminating

unnecessary costs and runtimes during nights, weekends, and holidays.

Just-in-time environments: Ideal for short-term, standalone workloads, just-in-time environments

further streamline cloud costs by aligning the provisioning and termination of these resources with

the actual duration in which they’re needed. Examples include short-term testing phases in

software development pipelines.

Determining which approach is best requires understanding how your teams use these

environments, how frequently they’ll need them, and who will be responsible for ensuring their

availability. Naturally, a just-in-time approach will entail lower costs than those that run the full

business day but could lead to redundant provisioning processes and access delays if users need

them at various points throughout the day.

When deciding on the right approach to implementing ephemeral environments, 

it’s critical to evaluate the impact on productivity, staffing, and user experience in addition to costs

on the cloud bill.

Scheduled Environments Just-in-Time Environments

 Set to run only during standard business hours

 Access needed at various points throughout  
the day

 Eliminates redundant provisioning every time
they’re needed

 Prevents wasted cloud costs during nights,  
weekends, and holidays

 Set to run only for the duration of the workload  
it supports

 Access only needed for short-term, standalone
workloads

 Eliminates redundant provisioning every time
they’re needed

 Prevents wasted costs due to unnecessary
runtimes when the workload isn’t needed

Comparing the Types of Ephemeral Environments

02 | Whitepaper Ephemeral Environments

Background: A Case Study in Wasted Cloud Costs

This paper will examine an enterprise software vendor that maintains a unique production

environment supporting each of its customers’ workloads.

In support of each of these customer-specific production environments, the software vendor also

maintains several cloud-based environments for non-production tasks, such as development and

testing.

Financially, the cost to deliver these non-production workloads would hold back profitability

continually. The onboarding of new customers, as well as the delivery of new features in support of

those customers, entailed the creation and maintenance of not only a unique production

environment for each customer, but also the non-production environments supporting them.

Subsequently, revenue growth requires increased cloud costs to deliver these environments,

eating up profit margins as a result. Any opportunity to trim the cloud costs for these environments

would have a direct impact on profitability.

These non-production workloads were perfect candidates for ephemeral environments, or those

which run only during the hours in which they’re needed. By aligning runtimes with the team’s

actual needs, converting non-production workloads to ephemeral environments could eliminate

cloud costs without affecting day-to-day operations at all.

However, even while recognizing the potential impact of ephemeral environments on operational

expenses and gross profit margins, this organization still faced significant barriers to adopting

some of the measures that would unlock this value.

Any plan to implement this change would need to eliminate complexity and employ automation to

integrate with the engineering team’s existing workflows and capacity.

03 | Whitepaper Ephemeral Environments

Calculating the Financial Benefits

of Ephemeral Environments for Non-Production
Workloads

One critical consideration for this project was to identify which non-production workloads were

eligible to be converted to ephemeral environments. For example, some environments for backup

and testing were required for 24/7 availability to comply with customer agreements.

After reviewing all non-production workloads and accounting for these types of requirements, the

Quali team identified more than 350 environments that were running 24/7 but were only needed

for activity during standard business hours

This amounted to about $1.9 million in annual cloud costs for non-production workloads alone.

Some basic math uncovered that more than

50% of runtimes for these non-production

workloads were unnecessary. Simply

eliminating runtimes overnight, on weekends,

and on holidays, would eliminate a substantial

amount of cloud costs without affecting day-

to-day productivity.

Eliminating these unnecessary runtimes would

amount to an estimated $1.26 million

in annual cloud cost savings.

Total Hours of Operation

Idle Hours Identified

Weekends & Holidays

Workday Off-Hours

Active Hours Required

8,760 Hours

4,4760 Hours

(54% of total)

2,760 Hours

24 hours × 115 days

2,000 Hours

8 hours × 250 days

4,000 Hours

(46% of total)

Cost Savings Calculation

04 | Whitepaper Ephemeral Environments

Requirements for Implementing 
Ephemeral Environments

Uncovering the cost-savings opportunity was not the primary challenge. Obviously, consuming

fewer cloud services will result in a lower cloud bill.

The true obstacle is acting on this waste.

Without the right tech stack, converting non-production workloads to ephemeral environments

requires significant overhead. Accomplishing this transition requires:

Codifying Infrastructure:

Ephemeral environments require daily provisioning and termination of cloud resources,  

which would entail substantial manual work if approached through a manual ClickOps approach.

Infrastructure as Code is critical to establishing this automation.

Codifying Environments:

Even with cloud services defined as code, many environments require configuring dependencies

and input parameters for various components—infrastructure, applications, data services etc.  

This adds more overhead to the daily delivery of ephemeral environments, as few organizations

can codify these environments so they can be managed similarly to Infrastructure as Code.

Cloud Governance:

As the volume of reusable assets for infrastructure and environments grows, so does the risk of

security vulnerabilities and inflated cloud costs due to misconfigured and over-sized resources.

Lifecycle Management:

Aligning cloud operations with utilization requires the timely provisioning and termination of

infrastructure, which can be hampered by human error, failures in IaC commands, and drift due to

staff turnover or other organizational changes over time.

05 | Whitepaper Ephemeral Environments

Maintaining Infrastructure:

Updates to infrastructure code or routine activity like security patches and application upgrades

can result in unexpected side effects on infrastructure, which could include reliability of non-

production environments as well as the effectiveness of lifecycle management.  

If the implementation of ephemeral environments affects reliability or fails to align with standard

processes for Day 2 activity, the engineering team is likely to abandon the plan altogether.

Monitoring for Reliability & Performance:

Similarly, the ability to diagnose and reconcile unexpected errors, configuration drift,  

or other updates will need to align with the operation of ephemeral environments.

Implementation needs to account for these challenges while minimizing the impact 

on staff bandwidth.

Implementing Ephemeral  
Environments

To help navigate the challenges and ease the implementation and operation of ephemeral

environments, this project employed generative AI, automation, and cloud governance via Quali’s

Torque platform.

Here is how it works:

Automating the Codification of Cloud Infrastructure

Without the right tech stack, converting non-production workloads to ephemeral environments

requires significant overhead. Accomplishing this transition requires:

 Connecting to the user’s public cloud accounts (with support for AWS and Microsoft Azure

 Discovering the resources deployed via those account

 Automatically generating open-source Terraform IaC files defining the state of the resources

discovered

Once codified, these IaC files can be downloaded and added to a repository. This can accelerate

the creation of IaC files that will be used to create ephemeral environments without requiring

extensive training or new staff with expertise in IaC.

06 | Whitepaper Ephemeral Environments

Automating the Codification of Cloud Environments

Even after automating the creation of IaC files, the orchestration of environments threatens to

derail the seamless integration of ephemeral environments.

The solution is to define Environments as Code, including the parameters for individual cloud

resources and dependencies among them, so users can run and maintain environments

continuously.

To accomplish this, Torque:

 Connects to the user’s repositories (with support for GitHub, GitLab, Bitbucket, and others

 Discovers and inspects the resource configurations defined in the IaC modules and other

resources in those repositories, including those generated by Torque and otherwise (with

support for Terraform, OpenTofu, Ansible, Helm, CloudFormation, and others

 Normalizes these resources to eliminate differences in languages and other details so they can

be used interchangeably as components in an Environment as Code blueprin

 Provides an AI Copilot for users to submit natural-language prompts describing how these

resources should be configured to deliver an environmen

 Designs the environment in Torque’s interactive graphical UI showing dependencies and inputs

for each resource, with the ability to modify the environment by clicking and dragging the

components in the environment desig

 Creates a file containing the code in line with the environment design, which automatically

updates in response to changes made in the graphical UI tool

Once created, Torque can execute the code in these files—referred to as “blueprints”  

in Torque—to deploy environments repeatedly. These blueprints provide the foundation for

ephemeral environments.

07 | Whitepaper Ephemeral Environments

Automating the Lifecycle of Cloud Environments

While the inventory of reusable IaC modules and Environment as Code blueprints eliminates  

the manual codification of resources needed to support non-production workloads,  

they don’t inherently address the overhead required to align cloud resource consumption with

development work.

Torque accomplishes this with Workflows, which create code to define routine actions, such as the

provisioning and termination of infrastructure. Workflows can be configured with cron expressions

to automate these actions on a recurring basis.

These Workflows can automate the day-to-day operation of ephemeral environments  

in line with the workday off-hours identified in the calculation section of this paper, thereby

providing uptime when non-production workloads are needed and eliminating wasted cloud costs

on nights and weekends.

What are Environments as Code?

Environments as Code is an approach that defines all the components, and dependencies among

those components, needed to deliver a workload as executable code in single file,  

referred to as a “blueprint.”

This approach eliminates the redundant orchestration of environments,  

enables the seamless integration of environments into GitOps workflows and CI/CD pipelines,  

and simplifies the maintenance of infrastructure and other environment components by providing

a single definition to manage.

08 | Whitepaper Ephemeral Environments

Democratizing Secure, Self-Service Access to Environments

When managed with traditional tools for provisioning and managing Infrastructure as Code,  

access to environments often requires a ticket request that can only be fulfilled by a select few

DevOps engineers or IT admins.

Security considerations often require this centralization of cloud access. To limit the distribution of

cloud account credentials and other secrets needed to provision infrastructure, DevOps and IT

teams are often the only ones empowered to deploy these resources. This contributes to DevOps

and IT becoming a bottleneck.

To address this challenge, Torque:

 Provides all end users access to environment outputs directly via the platfor

 Encrypts all cloud secrets and removes them from the provisioning process for those with end-

user permissions, eliminating the need to distribute sensitive information to enable access to

cloud resource

 Integrates with CI/CD platforms, Internal Developer Portals such as Spotify Backstage, and

makes environments available via IDEs, CLIs, and other dev tools so they become a seamless

part of the development lifecycl

 Manages custom role-based access controls to ensure that end users cannot modify

environment configurations or deploy any new resources

To put this in the context of our earlier example, this approach provides software developers and

other teams access to non-production environments they need—including with integrations into

their operational tools—while ensuring they don’t run overnight, on weekends, or on holidays.

09 | Whitepaper Ephemeral Environments

Additional Cost Optimization Opportunities for Ephemeral
Environments

The process of transitioning non-production workloads to ephemeral environments provides the

monitoring, automation, and governance needed to further identify and prevent wasted cloud costs.

Here are a few additional ways to optimize cloud costs for non-production workloads:

Identifying Idle Resources During Work Hours

Idle cloud resources do not only occur outside of working hours. Operating ephemeral environments as

code via Torque provides continuous monitoring for the capacity used among every resource deployed.

Based on this monitoring, Torque flags any live resource that is not using capacity as potentially inactive.

The Inactivity report shows all such resources, including a calculation of wasted cost and the ability to

view the user who deployed it, so engineering teams can communicate and make informed decisions.

This kind of visibility could lead to long-term decisions on which resources are considered critical and

need to be deployed automatically on a daily basis.

10 | Whitepaper Ephemeral Environments

Cloud Instance Right-Sizing Policy Enforcement

Right-sizing—or aligning the size of an instance to the actual needs of its workload 

—can have a significant impact on cloud cost optimization.

Implementing right-sizing, however, is often easier said than done. If engineers provision instances

that violate their team’s instance sizing guidelines, they likely won’t know until after receiving the

cloud bill. Similar to the management of the infrastructure lifecycle, any manual effort creates the

risk of human error or drift following staff turnover.

Since Torque initiates the provisioning of all cloud instances, the platform can automatically deny

activity that violates custom policies set by administrators.

This can include policies about instance sizes. If a certain team only requires certain sizes of

instances, a policy instructs Torque to deny the action and can be set to trigger an approval

workflow.

This proactively prevents the deployment of over-sized infrastructure, while also providing

administrators the option to approve exceptions to the rule.

11 | Whitepaper Ephemeral Environments

Maximum Cost Policy Enforcement

Similar to policies around instance sizes, many Torque users implement a policy for maximum

expected cost.

Torque calculates the expected cost based on the resources in the Environment as Code blueprint

(which can include individual IaC resources) and the environment duration set prior to deployment

(which can be required to launch a resource).

Based on this calculation, Torque can deny the deployment and require approval if the expected

cost exceeds the maximum expected cost policy.

This accelerates productivity by allowing engineers to run infrastructure that will not significantly

increase cloud costs, while providing assurance that anything expensive was reviewed and

approved by an administrator before it was launched.

Collaboration to Eliminate Redundant Infrastructure Deployments

Redundant deployments are an often-overlooked contributor to wasted cloud costs.

If, for example, five engineers provision identical cloud resources concurrently, the total cloud cost

is five times more expensive than is necessary.

Torque users can share access to environments among individual collaborators, teams, or groups

within a team. Collaborators are notified when an environment is live and provided a direct link to

access the environment outputs.

To help promote this collaboration, Torque displays the number of active instances of each

environment prior to deployment via the self-service catalog so end users are made aware that the

environment they’re trying to access is already live. If a user needs an environment but was not

added as a collaborator, they can access the output on the Operation Hub, which shows all

recently deployed environments for that team.

Another source of this waste is in the redundant deployment of infrastructure services supporting

separate workloads.

Say, for example, two engineers need to run the same Kubernetes cluster to support different

environments. In Torque, engineers with administrator permissions can share access to this

Kubernetes cluster so it can be used as an input for separate environments. When those users

provision their environments, they’ll find that cluster available as an input—thereby eliminating the

need to spin up that cluster for any subsequent use cases.

On a day-to-day basis, eliminating these redundant resources can add up to significant cloud cost

savings.

12 | Whitepaper Ephemeral Environments

Conclusion

The adoption of ephemeral environments is reflective of the evolution of cloud infrastructure

management.

For years, DevOps and other engineering teams have prioritized speed via Infrastructure as Code

and CI/CD, sacrificing control and governance as a result.

Building upon these principles, this approach supports long-standing DevOps practices for

managing infrastructure while automating the kinds of tasks needed to optimize cloud costs.

To learn more, visit http://quali.com

13 | Whitepaper Ephemeral Environments

http://quali.com

