Quali TORQUE

rcomputer:

from your desk to the
private dev cloud

Model fine-tuning as a Service with Torque
and NVIDIA DGX™ Spark

Immutable infrastructure and containers changed everything about how we ship code.
Developers got used to fast feedback loops, spinning up an environment in seconds, test their
changes instantly, tear it down and iterate. That velocity became not only an expected baseline,
but also made possible faster product feedback loops and business value delivery.

When it comes to resource intensive LLMOPs operations, the world seems to shift back to a
pre-cloud era of scarcity. The requirements for expensive GPUs and NPUs along with fast
unified RAM and 10 are even more relevant to the development and experimentation phases of
model development than production inference.

Faced with mounting exponential cloud costs, many companies are seeking a path for scaling
LLMOps operations that would be both viable from a cost perspective and avoid holding back
engineering efforts. Short of that coveted middle ground, the release process, is doomed to
become choppy at best, held back and at times grinding to a halt, not because the code isn’t
ready, but because the infrastructure to validate it is locked up, idle, or hopelessly
oversubscribed.

r ~ ” ™
1. Data Curation 2. Experiment Outer
Exrlclatcr Data Analysis Data Run the LLM bas ecl C‘““Cn "-h Route manual or autogenerated user feedback to experiment to
normalizing, labeling and & different data, parameters, or co improve solution perffermance

to hangathe cutrJt I I Loop
6. Monitor
Track and analyze system
haa\th aml mctlr:l
(p I L 1ment
| |
Inner 3. Evaluate 5. Inference
Assess the palfclman e of the Derlc mcclelancl clutlcn cmrcment tc QA Make predictions based o
LOO outputs J t pre-defined environment to sz performance before deploying the deployed mctle\ S
p mEtllc,- and the results of the to the prc(lucllcn eny IrcnmEnt inputs, return results to user.
previous exrer\mr:nt\a ults.
\ J \ J

Source: https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/mlops-in-openai/

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/mlops-in-openai/

Enter the NVIDIA DGX Spark

The new NVIDIA DGX Spark is an appliance that aims to unclog that very bottleneck. At around

4K USD it is economical enough to allow engineers uninterrupted access to a resource capable
of supporting experimentation in model fine tuning and inference with tens of billions of
parameters. These numbers make all of the difference between having a scalable LLMOps
process and one blocked by cost constraints. Alternative cloud solutions, such as AWS
Bedrock, could cost over 100K for a model pipeline just based on provisioning, storage and
resource costs alone.

Having such an appliance on your desk is definitely every engineer’s dream, allowing to test
inference behavior locally, and validate end-to-end pipelines without the latency or cost of cloud
GPUs. But it’s important not to oversell: these workstations also come with constraints. They are
not a silver bullet, but rather a powerful dev level accelerator.

We've been testing out a sample unit of this new NVIDIA product for almost a month and can
certainly testify its positive effect greasing our own LLMOps pipeline, however it was also
immediately apparent that using this box to solve localized single-engineer problems misses out
on its true potential.

The real question was: how do we make those workstations part of something bigger, a shared,
scalable, managed fabric rather than isolated islands of super-computer-productivity? Working
as a part of an engineering team, it doesn’'t make any sense to have this (literally) golden box
sitting dark and unused overnight or on weekends, when our distributed team is starved for
similar resources.

It soon became clear: the problem wasn'’t just resourcing. It was coordination, governance, and
repeatability. We needed a system that allowed experimentation to scale without collapsing into
chaos.

https://www.nvidia.com/en-us/products/workstations/dgx-spark/

From Individual Developers to Teams:
How to Carry Scalable LLM Development on a Budget

We love dogfooding at Quali, and our main product line Torque, seemed to be a great fit for the
challenge of cloudifying the DGX Spark access. Transforming it from a localized resource and
into a fabric, with self-service access and governance built in.

Q TORQUE

Hyper-reasoning
(@) Explore your self-service catalog containing all the models or templates of environments published by your admin for you to use. Simply click ‘Launch’ te provision your environment or ‘Execute’ to run a template automation flow. Dismiss.

| [1] Self-Service
Search Z Labals Favorites Sort By

3 Operate

e Operation Hub

il Reports custom_meodel_inference - model-fine-tuning

i

#4 Design

[Autemation Inventery

@ Input Sources

Par.

% Repositories

@ Cradentials
& Agents

iy, Daeployment Engines

As we began envisioning what this project would look like, it was very clear for us what success
would look like:

» Developer-first self-service: Engineers should be able to request fine-tuning environments
without hopping into Slack or emailing ops teams.

e Policy-guarded access: We needed governance - quotas, scheduling limits, access controls,
so nobody hogs the fleet.

e Reproducibility and consistency: The same blueprint used in local dev, Cl, or staging should
produce essentially identical environments.

« Smart utilization: Idle hardware (overnight, weekends) should be auto-harvested rather than
wasted.

o Cost elasticity: When demand exceeds internal capacity, spill over seamlessly to external
cloud resources.

In pursuing those goals, we realized the architecture we needed looked a lot like internal
“infrastructure as a service,” but for Al and inclusive of discrete resources such as the Spark
box.

The Super Computer as shared Al Infrastructure

As we were considering where Environment-as-a-Service concepts could apply in the LLM
workflow, we realized the same principles that make cloud infra self-serve, inventory,
templating, scheduling, governance, also apply to on-prem and workstation-level GPUs. Torque
became our mechanism for that translation.

Thankfully, in addition to IAC assets such as Helm chart or Terraform files and native support for
running configuration scripts, Torque also includes a resource inventory module. This feature
allows the user to define a given set of discrete resources (anything from connection pools to

DGX Spark) and then allow access control, sharing and scheduling.

Q. TORQUE

Account Center / Resources Inventory

Cloud Resources Custom Rescurces

@ Account Center

2 curate

Search by keyword = MoreFitters], Metrics Showing 1 - 10 of 10

| < Resources Inventory
% Operate
+f Operation Hub
il, Reports
% Design
{6} Settings
% Repositories
O Agents
%, Deployment Engines
Q@ Credentials

(3 Cost Configurations

Reservation Status (O

Available 9

10

Reserved 1 Resaurees.

ne

E Spark_GDX_0101

T Spark_GDX_0102

Type
GPU-OnPrem

GPU-Cloud

Fine Tuning Host

Fine Tuning Host on-prem

Fine Tuning Host on-prem

Lacation

on-prem

cloud

ather

Available

Reserved

Creating the Model Fine-Tuning blueprint

We wanted to create a flow whereby the developer selects the base model for fine-tuning and
provides a link to the data set, then simply launches the blueprint, either manually or as a part of
the git flow. Behind the scenes, we wanted the system to allocate a DGX Spark or queue the
request up if one is not immediately available.

With Torque, all blueprints are defined as simple YAML files, sourced within the GH repositories
or kept on the Torque server. We can very quickly set one up for this use case.

spec_version: 2
inputs:
ram_size:
type: string
allowed-values:
- 64
- 128
description: |
64GiB: Suitable for lightweight applications or testing
128GiB: Common for moderate workloads or production databases

base_model:

type: string

allowed-values:

- NVIDIA-Nemotron-Nano-9B-v2

- Llama 3.1 Nemotron Nano VL 8B vl

- gpt-0ss-20b

description: |
NVIDIA-Nemotron-Nano-9B-v2: high-efficiency LLM with a hybrid Transformer-Mamba design, excelling in
reasoning and agentic tasks. It can generate reasoning traces before providing a final response.
Llama 3.1 Nemotron Nano VL 8B v1: A vision-language model, part of the Llama Nemotron family,
optimized for real-time applications and suitable for deployment on PCs and edge devices.
gpt-0ss-20b: Smaller Mixture of Experts (MoE) text-only LLM for efficient AI reasoning and math

training_file_s3_arn:
type: string
default: arn:aws:s3:::acme_de_latest_ds/ds_09_25_25.jsonl
description: |
Data set for fine tuning the model

resources:
fine_tuning_host:
selector:
type: Fine Tuning Host
quantity: 1
attributes:
- RAM: '{{ .inputs.ram_size }}'

The next stage is making sure our environment is set up properly. This is where DevOps meets
ML: installing the correct CUDA drivers, PyTorch versions, NVIDIA NeMo software release, and
dependencies for the tokenizer or optimizer.

In theory, this process should be reproducible, but in practice, it's brittle. A local run on CUDA
12.2 may behave slightly differently than a shared GPU node on 12.1. While containerization
helps, NVIDIA provides NeMo Docker images on NVIDIA NGC™ with most dependencies pre-
installed, but even then, mismatches in data mounts, authentication tokens, or Python patch

versions can derail a run.

Q. TORQUE
e i Self-Service Building Block Repository Estimated Cost Assets Labels. Modified by Last modified Currently Active
0 Self-s = B torque_lac NIA setup-docker-en... Al (@ ronivover octm 2028 1 iy
& Operati
¢> Blueprint Designer [] catalog Design @) Instructions @ Tags [Policies
2 Desig
@ Automation Inventory < e Designer Canvas (Read-only) Sattings
@ Inputs:
= Paramet
& setting
% Reposit
=) dential
£ Agent
Ty Deployi E
A Governance
setup-docker-environment ' NGC-login i a install-latest-drivers . u run-fine-tuning
@ vaid @ veid @ vaid @ vt

Once the fine-tuning run completes, the output is evaluated against test sets or downstream
benchmarks. In the NeMo framework, you might run evaluate.py with the same YAML config to
generate accuracy, perplexity, or BLEU scores, and log the metrics into your experiment

manager.

If the model meets its goals, it's exported as a .nemo file, a self-contained package including
weights, tokenizer, and configuration. From there, the file is uploaded to an inference endpoint
or served through NVIDIA Triton Inference Server or TensorRT-LLM.

https://www.nvidia.com/en-us/gpu-cloud/

Overcoming the Hidden Tax of Discontinuous GPU
Access

As a last step, we can set additional rules about the DGX Spark usage. Constrain the number of

hours/days for which it can be reserved by engineers and enforce policies and quotas per
project.

& Launch Form General Details
Configure environment settings

.................
{2} General Details
3] Inputs ® Scheduling
Set a start time and duration for your enviranment

& Tags Launch Time

2, Owner and Collaborators

Enviroanmen t Duration

3 Time Z

2 » o]

) Based on Owner's Time Zone

Estimated Cost N/A

DGX Spark aims to bring supercomputer-class Al capabilities to the desk of every data scientist.
Quali Torque transforms those individual workstations into a shared, on-demand cloud of fine-
tuning resources.

Together, they solve a fundamental challenge in Al development: bridging the gap between
powerful desktop prototyping and realistic, collaborative testing environments and fast
development cycles. By providing on-demand access to production-class hardware,
organizations maximize ROI on expensive Al infrastructure. Data scientists wake up each
morning to a clean workstation, while their off-hours capacity powers the team’s rapid progress.

In summary, NVIDIA DGX Spark gives engineers a reliable, desk-level accelerator for model fine-
tuning and inference. Paired with orchestration platforms like Torque, it bridges the gap between

local experimentation and scalable cloud deployment, without bottlenecking progress or
budgets.

	Page-01
	Page-02
	Page-03
	Page-04
	Page-05
	Page-06
	Page-07

