Quali TORQUE

fation for
-Edge:
NVIDIA DGX Spark o

How we are bringing Agentic Intelligence to P -
the Edge with Torque agents and the new

. P
NVIDIA DGX™ Spark

Agentic workflows are disrupting and subverting the way software is developed. In the first
stage of Al adoption, companies developed agents and LLMs as separate add-on features and
components. An Al chatbot for customer support, a specific agentic workflow within the
application that carries out autonomous operations or an MCP server to be able to provide
access to the application data by other agents.

As the potential of models to solve non-deterministic problems became apparent though, they
started seeping into the core application code. Today, when implementing any core feature in

SaaS or client applications, the engineering team would decide based on cost economics, and
the nature of the problem which parts of the process would be automated using deterministic

code and which automated with Al agents.

Code and agentic workflows become inseparable.

Embedding intelligence into the app creates a new set of constraints, however. The Al runs as
part of your application stack, on infrastructure you control, using models you've selected and
fine-tuned for your specific use cases. If the application has client-side components, it must also
be available as a local capability.

Distributed Local Execution with Torque Agents

We have experienced first-hand the friction of integrating LLMs into application code with Quali's
flagship product: Torque. Torque is an IAC Al-driven orchestration and automation engine. The
product is specifically architected to support orchestrating distributed infrastructure in both
private and public cloud.

As an environment-as-a-service platform, Torque provisions and manages resources across
cloud providers, on-premises data centers, Kubernetes clusters, and edge locations, often
simultaneously within a single environment blueprint. The control plane can’t directly execute
commands in these distributed locations. Instead, it relies on Torque agents.

These agents are lightweight processes deployed deep inside customer networks, private
clouds, air-gapped facilities, and restricted environments where the central control plane has no
direct access. They're the execution layer, the components that actually spin up VMs, configure
networks, deploy containers, and manage infrastructure lifecycles in environments that might be
separated from the control plane by firewalls, VPNs, network policies, or complete air gaps.

The agent’s job is to translate orchestration intent into local action. When a blueprint requires a
Kubernetes namespace in a private cluster, or a VM in an on-premises VMware environment, or
a database in a customer’'s AWS VPC, the agent receives instructions from the control plane
and executes them within its local context. It has access to the local APls, credentials, and
network paths that the control plane doesn't. It's the bridge between centralized orchestration
and distributed execution.

But infrastructure orchestration increasingly requires intelligence, not just execution. When an
agent provisions an environment and something goes wrong, a resource conflict, a quota limit,
a networking misconfiguration, it needs to do more than report an error code back to the
control plane. It needs to reason about the failure, understand the local context (what other
resources exist, what constraints apply, what alternatives are available), and either resolve the
issue autonomously or provide actionable guidance to users.

This is where embedded agentic intelligence becomes critical for Torque agents. The agent
can't rely on the ability to always reliably call out to a central Al service. Latency, availability,
connectivity and predictability makes this approach unreasonable as an architecture for the
core application implementation. Instead, the agent needs local intelligence: a model running
on the same infrastructure, with access to the same local context, capable of reasoning about
infrastructure state, troubleshooting failures, and making autonomous decisions within policy
guardrails.

Local applications leveraging local model inference

Deploying an ML enabled agent inside NVIDIA DGX™ Spark creates a predictable and seamless
way for distributing the agent client application. Now, when a deployment fails in a private
Kubernetes cluster, the agent’s Al can finally leverage its full capabilities. It can query the cluster

state, examine pod logs, check resource quotas, review recent changes, and diagnose the root

03| The Al Workstation for the Intelligent Edge: NVIDIA DGX Spark ©Qualisystems Ltd 2025

https://www.nvidia.com/en-us/products/workstations/dgx-spark/
https://www.nvidia.com/en-us/products/workstations/dgx-spark/

cause, all locally, without sending proprietary infrastructure details to external services. It can
suggest fixes, automatically retry with adjusted parameters, or escalate to human operators
with context-aware explanations.

The intelligence runs where the execution happens, and more importantly as an integrated part

of the agent code base, with zero dependency on external connectivity and availability.

[@ DevNet / Operation Hub / Cisco Modeling Labs

A status (1] Blueprint Display Name 2 Qwner 22 Collsborstars (3) current Cos W uptime © Time Remaining

Active With Emor @® oss 7 46m 285 3d23h
L

Grains Map MGrains 10 Resources M 4 ¢ & ou B E [#] & Cisco Modeling Labs v

B Get Al Insights

license

® niv
Hey therel These insights are just suggestions, so feel free ta take them with a grain of salt. Keep in

- mind that there could be other factors to consider as well Hope that helps!
] [2 update | [2 mesouwces | [20t |

(1) Error Description
[20:49:21784] > Running on torque-super-sonic-fecics?. Storage
AR g 2,205 1130 AM._Total Duration Om s

##4 Simple Explanation iy ol e) Get Alllnsights

The problem here is that Terraform is trying to create resources (specifically a Redshift
Subnet Group an iCache Subnet Group) that already exist in your AWS
environment Thi g the process to fail because AWS does not allow the 51128 AM Total Duration Om Os

creation of dupl rces with the same name.
##3 Detailed Explanation Sta un 3AM Total Duration Om Os

Terraform is 3 tool used to automate the ereation and management of infrastructure.

When vou run a 'terraform applv’, it attemots to create or undate resources as defined

@) Copy text

2,20551:28 AM Total Duration Om is

Reliable machine learning at the edge is not unique to Quali's products. In retail, agents could
handle personalized customer interactions understanding queries in natural language,
searching local inventory, checking real-time supply chain data, offering alternatives,
processing transactions, and learning from interactions all without sending customer data to
external services, with the information available on the client hand devices.

Imagine a retail chain with 500 locations, each running a DGX Spark unit hosting a local agentic
assistant. Each agent handles customer interactions, inventory queries, and point-of-sale
assistance using local context current inventory, regional preferences, store-specific data. The
agents operate autonomously, without constant cloud connectivity, ensuring customer
experience isn’t dependent on network reliability.

Not every organization wants to or can legally use cloud-based Al services. Financial services
firms may have regulatory restrictions on external API calls. Defense and government agencies
require air-gapped deployments. Healthcare organizations face HIPAA and patient privacy
constraints. Manufacturing companies worry about IP leakage when proprietary processes are
visible to external inference APIs.

With agentic workflows becoming ubiquitous, applications cannot afford core functionality to
depend on connectivity and security requirements that may not be possible for some accounts
and industries. Standard edge devices can’t handle it as model inference requires resources that
are non-standard for many customers. An Al ready appliance , at the edge, in a form factor that
fits the physical and operational constraints of real-world deployments can help unblock
application business process access to ML models.

Distributed Agentic Architecture

With the new DGX Spark, we found a reliable medium for deploying the local version of our
orchestration agent. Able to leverage our LLM models and agentic workflows in customer
environments that previously did not allow it.

The future of Al isn’t just smarter models in bigger data centers. It's also capable intelligence
distributed to where the work happens, running locally, making autonomous decisions in real
time. The NVIDIA DGX Spark makes that future deployable, that super-computer in a box, can
also become a simple way to package your remote, agentic, software components.

	Page-01
	Page-03
	Page-04
	Page-04-1
	Page-04-2

